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Lower Bounds for Wiener Integrals 
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Techniques are developed to sharpen lower bounds for density matrices occur- 
ring in statistical mechanics. The Wiener integrals are treated by insertion of 
trial functionals and parametric representations of unity that involve functionals 
of the path. Jensen's inequality is applied to suitable parameter-dependent path 
measures. These yield stronger forms than the basic Feynman bound. We also 
introduce trajectory insertions, and use coupling constant integration and the 
hierarchy for correlation functions to improve the bounds. 

KEY WORDS: Density matrices; lower bounds; path integrals 

1, I N T R O D U C T I O N  

In  the present paper  we describe ways to improve lower bounds  for Wiener  
integrals. In  an earlier paper  (1) we discussed two techniques to improve 
lower bounds  for the density matrices that arise for a particle moving in a 
given potential. One is a time-slicing technique that is the basis of the 
construct ion of the Wiener  integral. The main  point  was that time slicing 
leads to improved lower bounds.  The second technique involves carrying 
out the integral in two stages. The first stage involves an integral for a fixed 
value of the mean  position. In  the second stage one integrates over all 
values of the mean  position. This idea as applied to the partit ion funct ion 
goes back to the book  of F e y n m a n  and Hibbs. (2) It  is a special case of a 
procedure  called "reservation of variables" by Siegel and Burke. (3~ Their 
emphasis was on systematic expansions, rather than on lower bounds.  

In  the present work we combine  these ideas in a technique that 
involves insertion of representations of unity in the path integral. In Section 
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2 we discuss insertions of the form 

1 = f 6 ( z  - F ) d z e  ~. e -~ (1) 

where F and fl are functionals of the path x(u). Without loss of generality 
we may take 0 < u ~ 1. The mean path position approach is a special case 
when F = 2 = f i x  du. fl is a trial functional. Lower bounds are obtained by 
applying the Jensen inequality (4) to the path integral. The key point is that 
the Wiener measure is replaced by a z-dependent measure. A further 
application of the Jensen inequality leads to the fundamental Feynman 
inequality. An interesting point is the connection of the insertion technique 
with the Feynman variation method. If/~ = 0, the insertion 1 = f6(z  - F) 
dz leads to the same results as the use of a trial functional ~o(F) with the 
optimum choice of ~0. 

In Section 3 we discuss lower bounds obtained with insertions of the 
type 

= f f dz,dz  (2) 1 

for some set t t , . . . ,  t,. This is an economical way of introducing time 
slicing and can be used in conjunction with trial functionals fi and 
insertions of the type discussed in Section 2. The technique is particularly 
useful for multitime path integrals. 

In Section 4 we describe trajectory insertions, i.e., translations x(u) 
x(u) + ((u), when ~(u) is a trajectory connecting the end points. While 

we do not pursue it here, it gives an idea of how semiclassical methods (s) 
can be improved by combining them with insertions and by using the lower 
bound property. 

In Section 5 we introduce a coupling constant in the functional and 
use coupling constant integration to find bounds accurate to a given order 
in the coupling constant. We also outline how the hierarchy of correlation 
functions may be used to achieve the same end. Both of these methods 
involve finding bounds for correlation functions. This is again done by 
changing from Wiener measure to parameter-dependent singular measures. 

Most of the methods described are not new and each one has undoubt- 
edly been used in isolation in special problems. However, taken together 
from the general viewpoint of insertions, and anchored by the lower bound 
property, they combine to form a flexible instrument for the analysis of 
path integrals. In another paper (6) we generalized the Symanzik (71 idea to 
make a systematic study of upper bounds. 

It goes without saying that our results are of a formal character, and 
there is no pretense at mathematical rigor. (g) All of our considerations have 
been developed for Wiener integrals, i.e., for density matrices. They can be 
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made the basis of more systematic expansion procedures. We do not deal 
with this topic. It is a route that must be taken to deal with the complex 
Feynman integrals representing propagators. 

, 

Consider 

THE I N S E R T I O N  T E C H N I Q U E  

(xllI(t)lx2~=s A~') 
(3) ( Dtx = ~,  x exp\ - 

i.e., Wiener measure. A(t) is a functional of the path end x(u), with end 
point parameter u -- L Since the limits x I and x 2 and the interval t will be 
almost always fixed we write frequently 

( x l l l ( t ) l x 2 )  = E * e  A (4) 

and read the parameters from the expression on the left-hand side. Note 
that 

s XlD, x=-- E*I = (Xdpo(1)lx2> (5) 
2 

is the free particle density matrix. All of our considerations are independent 
of the dimension of space. 

Feynman's application of the Jensen inequality for the exponential 
function using Wiener measure (i.e., without a trial functional), gives 

(x,lI(1)lx2> > [E*I  ]exp[ E*A ] (6) 

With a trial functional fl we write 

(xlll(1)lx2)=s (7) 

Using a new measure 

D1xe~/E*e e (8) 

(xllI(1)]Xz) >[ E*eB]exp[ E*(A - fl)eB ] 
E,e~ (9) 

We strengthen this bound by a technique of insertion. Insert 

= f dzd(z - F) (10) 1 

where F is some functional. Interchange z and path integrations, and take 
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as the (singular) measure for the path integration the z-dependent quantity 

O l X ~ ( Z  -- r)/E*8(z - F) (11) 

Jensen's inequality, applied for each z, gives 

(x,ll(1)[x2) > f dz[E*8(z- F ) ]  .exp[  E*A6(z- F) ~ - ~ ( z  22-F- ~ ] (12) 

if one adapts 

E*8(z - F)/E*I (13) 

as a weight for the z integration and applies the Jensen inequality again, 
one finds the simple Feynman bound. Thus, the insertion leads to a 
stronger inequality than the Feynman bound without a trial functional, for 
any F that leads to a finite result. 

We may insert e r �9 e -~ = 1. For each z take 

OlxS(z - F)eB/E*5(z - F)e ~ (14) 

as the singular measure for the path integration. Then 

[ E*~(z-F)e~(A- f l )  
(XllI(1)lx2) > f dz[E*6(z- F)eB]exp (15) 

if we take as a weight for the z integration the expression 

E*8(z - F)e B 
E,er (16) 

Jensen's inequality gives the Feynman bound with trial functional ft. 
We can relate this to familiar things by taking F--- 2, ~ = flx(u)du, in 

the inequality (12). With fi = 0 it becomes the mean path lower bound 
suggested by Feynman and Hibbs for the partition function. This was 
applied to the density matrix by Siegel and Burke, (3) Bruch and Rever- 
comb, O) and the author. (1) For any A we have 

(xllI(1)lxa) > f az [ E*6(.~ - z)]exp{ E*/5(N - z)A grg(  :: ] (17) 

The path integrals can be evaluated by using the integral representation of 
the delta function 

1 ~+~e-iO, zE.ei,~.da (18) 
E* (z - = N 

For the one-dimensional case 

(19) 
x2 (2r 1/2 2 . 
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For a time-independent potential A has the form 

A ~- fd'l~ ~(~)f01~[x(t)- 3'/] d, (20) 
So we need E*8(~-z)6[x( t ) -  7/]. This is given in (A15) of Ref. 1. The 
result is (in one dimension) 

(12) '/2 <xliOo(1)lx2> 
.~x~ IDIX3(~-Z)~[X(')-']- 2"n" [o ( i_3o) ] ' /2  

X e x p { - 6 [ z  (xl + x2) ]2} 

(21) 

with 

o = t(1 - t) 

Q= { ~ -  x 2 -  t[x 1 - x 2 + 6 o z -  3o(x, + x2)])2/2o(1- 30) 

For a "two-time" functional for A we need correlation functions of the type 
E*8(~-z)8[x( t ) -  , / ]6Ix( t1)-  */1]. These can be evaluated explicitly by 
the same technique. 

There is an interesting relation between the insertion technique and the 
usual variational approach. If, in Feynman's inequality, we set/3 = oa(F), 
we find 

> {E,e,4F)}exp { E*[A - oa(F)]e '~ 
E * e - ~  } (22) <XlII(1)iX2) 

We can use a parametric representation for each factor. Thus 

E*e '<F) = f dz e'~(Z)E*8(z - F) (23) 

The function ~0(z) can then be varied to find the best lower bound. This 
turns out to be equivalent to canceling the argument of the exponential. 
One finds 

co(z) = [E*3(z - F)A] / [E*6(z -  F)]  
(24) 

<XllI(1)lx2) > jd z  d'<Z)E*a(z - F) 

This is the result of the insertion technique. 
It is clear that this result is easily generalized. Given two functionals F~ 

and F 2 (for example, F 1 = ~, F 2 = ~2) one can look for optimum ~0(Fl, F2) 
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in the standard bound. The result is the insertion bound 

(xlll(1)lx2) f dz,f Fl)3(z 2 - F2)]e ~~ . . . .  ~) 

r176 ,z21 = [ E,A~(z1_ rl)6(z2_ rz ) ] /E ,3(z  ' _ F1)3(z2_/ ,2)!  (25) 

A standard approach to many time functionals A is to use a potential 
type trial functional 

/3 = f 0 ~ [  x (u)] au (26) 

in the Feynman bound. One needs the density matrix 

<XlLO,(  lxa>=;x; O  expIs ) 
It can be computed by path integral methods or from the Bloch differential 
equation via the Kac relation. (1~ The correlation functions can be com- 
puted from the Markov property: 

= f <x,lo,(r- t)lz>az<zlo,(,)lx2> (28) (xllp+(T)]x2) 

The improved bound involves o~{fl~p[x(u)] du} and can be computed using 

E*3 { z - s  I f ;Sdae-i~ZE,ei~s u (29) 

Thus we need the density matrix for a variable, imaginary strength. 
Another example occurs in the analysis of two time functionals A. One 

common approach is to use a quadratic trial functional F~ + F 2 with 

F, = s  s  l u')x(u') dudu' 
(30) 

F2 = fo X(u)x(u)du 

The Gaussian integrals can be done explicitly. Again, the insertion tech- 
nique generalizes this to an optimum ~o(F1,/'2). 

We note finally that one could compute a variational bound with a less 
than optimal oa0(F ). This follows from the bound obtained with the 
insertion 1 = fdz 3(z - F). One inserts e ~~ �9 e -~~ and takes 

E*6(z  - F ) e  ~~ 

E*e '~176 (31) 

as a weight for the z integration. Then one applies Jensen's inequality. 
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3. CORRELATION INSERTIONS 

Consider the insertion 

l=f018Ex(t )-~]dz,  0 < t <  1 (32~ 

Use a trial functional ft. The singular measure for path integration is 

{DlxS[x(t ) - z]e/~}/{E*8[x(t) - z]e ~ } (33) 

This depends on z and t as well as the end points xl ,x  2. We have the 
bound 

7 ~, ~E*(A- f i )er  - z ]  
(Xl[I(1)]x2) >~fdz {E*8[x ( t ) -  zJ ) e  expl . . . . . . . .  E * 8 [ x ( t ) - z ]  e~ 

(34) 

One expects that there will be a t = t* that optimizes the bound. We will 
not be concerned with this. Instead, consider some weakening of the 
bound, that still leaves us with results stronger than the elementary Feyn- 
man bound. Note that, for any t, the application of Jensen's inequality to 
the z integration with weight 

( E* 8[ x( t )  - z ]e # ) / [  E* e r ] (35) 

yields Feynman's result. 
It is more interesting to integrate with respect to t. For fixed z, use 

dt { E*8[ x(t) - z]e B } /[  E*c(z)e ~] 
(36) 

= -~o'~[ x (u)  - z I du c ( z )  

as the measure for the t integration. Then 

<x,ll(1)lx2) > f dz[E*c(z)eB]exp[ S*c(z)eB(A - ~) E , ~ X  J (37) 

This can be obtained by the insertion 1 = fc(z)dz. 
The obvious generalization is obtained by inserting 

1 = f  " " " f d z  1 " " "  d z n S ( I x ( , , ) - z 1 ] "  " " ~ [ X ( l n  -- Zn)]}  (38) 
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It is 

<x,lZ(1)Lx2> > f fdz,.., dzo (E* iX(tl)- Z1]"""  ~[X(tn)-- z,]e ~ } 

E*(A - t~ )efl~ E X ( t l ) -  z 11 " ' "  ~[ x(In) - Znl 
x exp - ~ . . . . .  

l E 8 [ x ( t , ) - z , ]  : ~-[xi tS-- z-~-e-~ 
(39) 

The insertions of the previous section may be combined with those dis- 
cussed here. 

To relate to familiar results, we examine the single time 

A = l ' q E x ( u ) ]  du (40) 

We have the Markov property 

<x,ll(1)IxE)/dz <Xll l( l  -- t)Iz><zll(t)Ix2), 0 < t < 1 (41) 

We study only the case where there is no trial functional. The simple 
Feynman bound for the unit interval is 

<XIII(1)IX2> > <XllPO(1)IX2> 

[ f&l f~<x,lpo(l - u)'~)<~lpo(U)lXz)q~(~)du ] (42 ) 
• exp ~ - ) ~  

On the other hand, accepting the Markov property, one may bound the two 
factors separately. This leads to 

(xlll(1)lx2) > f dz <xll00(1- t)lz)<Z[Oo(t)lx2)exp[ f e~(n)e(n)dn I (43) 

with 

P(~) 

+ ltdu <ZlOo(t - u)lTq)<rllOo(U)[X2) (44) 

This "time-slicing" procedure improves the bound. We recover the bound 
given by Eq. (42) by applying the Jensen inequality to the z integration 
with 

(xllo0(1 - t)lz)fzioo(t)lx2)/(x,[Oo(1)lx2) (45) 

as a weight. 
It may be checked that the insertion 1 = f8 [x(t) - z] dz gives the same 
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result as the time-slicing procedure for the potential case. The insertion 
1 = fc(z)dz gives a time-averaged bound. 

Correlation insertions are more interesting for a two time A of the 
form 

1 1 l 

= �89 f f d, d,,w(,-,,)c(,)c(,,) (46) 

The elementary Feynman bound without trial action is 

<xl]i(1)]x2) > <x,lP0(1)ix2)exp [ 2<Xl]P0(1)]x2)l f fw( , ,_~lz)d~ld~12 

• E*c(~,)c(~2) ] (47) 

c(~1) and c(v2) can be split into contributions from 0 to t and from t to 1. 
We no longer have the Markov property. E*c(~j)e(~2) then has two 
contributions from the same time intervals and two crossed terms. The term 
involving both 0 to t intervals is 

x 2 aO 

(48) 

It has the value 

f f d, l d,2 W(,I - "2)J('otdUl fouldl~12 < x I [ P O ( / -  /~ / l )11~l>< ' l ] 'O( t / l -  U2)[ '2> 

• <,2]Oo(U,)[x2> (49) 

This type of term involves three free particle density matrices. There is a 
similar contribution from the interval t to 1. The contribution of the 
crossed terms involves four free particle density matrices. It is 

fd, f f  W(,1- '2)dT~l d'~2ft l<Xl]~O( l -- U ) [ ' I>< ' I [PO(  u -- t ) ] , >  d .  

x fo'<,loo(t - .=)fv=><,=[Oo(.=)lx:> du= (so) 

Contrast this with the insertion 1 = f6(t) - ~)dv, which is an economi- 
cal way of performing time splitting. We have Eq. (34) with fi -- 0. Again 
the term involving A has several types of contributions. The difference 
between the two types of bounds is already evident with the weaker 
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insertion 1 = fc(n)& 1. Then 

<xllI(1)lx2> > f 

ffW('ql -- B2)E*c('rl)C(Th)C('O2)d'~ldTl2 ] (51) 
�9 exp E*cQ1) J 

This involves higher-order correlation functions. The insertion 

1 .~tx(u)du - l= f  f fS[x(t)-z]~[-[_= z 1] 

divides the interval into two pieces and holds the mean positions of the 
segments at positions z 1 and z 2. Approximations made on the conditional 
path integral give effective interactions between the segment's mean posi- 
tions. 

4. INTRODUCTION OF A TRAJECTORY 

Consider first the single time A = f~q,[x(u)]du, Let ~(u) be a "tra- 
jectory" such that ~(0) = x 2, ~(1) = x 1, and make the translation in function 
space: 

x(u) = ~(u) + y(u) (53) 

This yields (after an integration by parts with y(0) = y(1) = 0), 

1 1"2 0 (x,lI(l)[x2> = e x p ( - ~  s  du) s Dlyexp [  s 1 

• s + y(u)]du} (54) 

For a two-time action 
-+! (1 ('1 

A 2Jo.)o (55) 

The lower-bound techniques may be applied for any suitable ~(u) and we 
may then set about finding the optimum ~(u). Thus the elementary Feyn- 
man bound without trial functional yields for the potential problem 

(x,lI ( l )lx2) > e x p ( -  �89 ; ~ du)(Olpo(1)[O > 

{ dzfle~[~(u) + z]f~ - z]dudz) 
• exp <Oloo(1)1o> 

(56) 
eLOD,x~[y(u) _ z ]>=  <01p0(1 - u)lz><zloo(u)lO> 
v'O 
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This is a useful form for obtaining lower bounds on the behavior of I as a 
function of x 1 and x 2. For  example, we obtain a simple, explicit bound with 
the straight line choice 

~(.) = x2 + u ( x ,  - x2)  

1. 2 a u ( x2  - x~) 2 

~ f o ~  - 

(57) 

To make contact with semiclassical theory, write 

+ fo' y(u)] d.-  E (u)l 

-y(.)+.[~(u)]d~) 

We see if there are solutions of 

~(u) + o,[t(,)] =o, t(o) = ~2, ~(1) = x) (59) 

One can then bound the density matrix by the Feynman inequality with no 
trial action. The next step is to examine the quadratic term in the expan- 
sion, viz. 

~., fo'$"[~(u)]y~(.) du (60) 

If ~"[((u)] < 0 everywhere on the trajectory (as in the much discussed (5) 
quartic oscillator ~ = X~ 4/4, X > 0), there is no difficulty. One can absorb 
the quadratic term into a trial action and proceed with the Laplace method. 
However, a simple potential such as ~ ( ( )=  g exp(- ,~2/b2) has continuum 
eigenfunctions and possibly bound states. The curvature $"(() can be either 
positive or negative, depending on the end points x~ and x 2. It is not 
sensible to include the quadratic terms on the trial functional for the 
regions ~"(~)> 0 in this type of treatment. We have not made a serious 
study of this problem. But the technique of insertions should help. For 
example, suppose one starts at a point x 2 where q,"(x2)< 0, Insert 1 
---fS[x(y)-z]dz for some small value of t. For the points z where 
~"[~(u)] (0 < u < t) is negative we proceed with the Laplace expansion. A 
crude approach is then to use the free action bounds for all other values of 
z. Of course, a better approximation would be to make further insertions to 
treat the parts of the trajectories from x 2 to those z where ~," < 0. 
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, 

There is 
identity 

COUPLING CONSTANT INTEGRATION AND THE HIERARCHY 

an elementary way of improving bounds. Start with the 

Repeating this 

We then find 

0 (eg ,. fogdglAeg,A eg" - 1 -- fogag, ~ ) = (61) 

eg" - 1 = gA + fogdg, (g - gOA2e ''" (62) 

( x~llg(1) - po(1)lx2) = ~ogdgl E* Aeg 'A (63) 

;oo' ( x , l IA1)  - 00(1)lx~) = gE*A + dg, ( g  - gl)E*A'e'" (64) 

We now need bounds for the correlation functions occurring on the 
right-hand side. The first equation is most useful when A has a definite sign 
for all paths. If A > 0 lower bounds remain lower bounds, while if A < 0 
upper and lower bounds for E*IA [e g'. on the right-hand side are converted 
to lower and upper bounds for the density matrix. The second equation 
preserves lower bounds and can be used even if A does not have a definite 
sign. 

We have already noted the utility of coupling constant integration in 
connection with the method of obtaining upper bounds using the Symanzik 
technique. Here we apply the identities to the lower-bound problem. 

Consider first the case where there is no trial functional and A is > 0. 
Use 

D,xA / f~;'D,xA (65) 

as a path measure. Using the first identity and defining 

(XliJ~(1)]x2) =_fx~lD,xAe gA (66) 

we have 

(xllJg(1)lx2) >~[E*A]exp[ E'A2 g ~ I (67) 

[e*A]' 
(xl,Ig(1)-po(1),x2)>~ [E.A2] { e x p [ g ~  ] - 1 }  (68) 

The result is accurate to order g2. With a trial action fl(g) the same method 
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yields 

(x '14(1) lx2)  >[ E,Aea(g)]exp[ E*A( gA_E__g_eUA- fi)e e ] (69) 

The second identity requires the evaluation of 

(x~lKg(1)[xz) =_ E*AZe gA (70) 

The lower bound is 

[ E*(gA - fl) A2eB ] 
(xllKg(1)lx2) >[E*A2eB]exp ~ , ~  2e-- ~ (71) 

This leads to a lower bound accurate to order g3 for Ig. 
The coupling constant integration is useful when one has a way of 

evaluating Jg or Kg for large values of g that is not accurate for g < 1. In 
that region more conventional methods can be used. 

Stronger bounds for Jg or Kg are available. We only treat the case 
where A has a definite sign. These depend on the form of A. When A has 
the form appropriate for a potential 

~Xl[Kg(l)lx2) ~ ;f~)(~l)~)(~2)d~ld~2 (E*8[ X(tl)- "~1 ]8[ x(t2)- ~2]e ~ } 

f E* 8[ x( tl) - ~ , ] 8 [ x ( t 2 ) -  ,2 ] (gA - fl )e B ] 
• exp ~ . . . .  (72) 

provided q,(~) has the same sign for all ~/. Of course, one can make 
additional insertions. 

For a two-time action the strongest form, without insertions, for 
W > 0 i s  

~Xl[Jg(1)lX2~ I f f W(~I- 172)dT~I dT~2s 1 dtl s 

• [ E*6[ x(t 0 - 71 ]6[ X(t2) -- r/2] eB ] 

IE*(A - t~)eBS[x(tl) - r / l]8[x(t2) - ~2] 

•  E,8[x(t,)_~l]8[x(t2)_rl2]e B (73) 

Finally, as in our paper on upper bounds, we note that the hierarchy of 
correlation functions can be used to improve bounds. For potential func- 
tions 

- po(T)lx2) = gfd:foo <X,loo(T- Ol:><zllAt)lx > at (x,lg( T) q,(z) 

(74) 
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For ~(z) >/0 we increase the accuracy by bounding (zlIg(t)lx2). If qb(z) < O 
we iterate the above equation once. 

For a two-time action the first equation in the hierarchy is 

( x , i I ( T )  - Po( T)ix25 = f f Ioo( T - t) iz5 dz W ( y  - z)  dy 

f [  t • Dtx ( 8 [ x ( u ) - y ] e  A(O du (75) 
x 2 JO 

For W > 0 it suffices to bound the correlation function by the techniques 
already described. 
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